View on GitHub

KGQA-leaderboard

Repository to track the progress in Question Answering over Knowledge Graphs (KGQA), including the datasets and the current state-of-the-art for the most common KGQA tasks.

Compositional Wikidata Questions (CWQ)

Compositional Wikidata Questions (CWQ)[1] is a multilingual KBQA dataset grounded in and executable over Wikidata. Our dataset includes questions in four languages (Hebrew, Kannada, Chinese and English), and their associated SPARQL queries.

This dataset can be downloaded via the link.

Leaderboard

The evaluation metric is Exact Match (%).

MCD 1

| Model / System | Year | Lang_En | Lang_He | Lang_Kn | Lang_Zh | Reported by | |:————–:|:—–:|:——-:|:——-:|:——-:|:——-:|:————————————————-:| | LSTM+Attention | 2021 | 38.2 | 29.3 | 27.1 | 26.1 | Cui et. al. | | E.Transformer | 2021 | 53.3 | 35 | 30.7 | 31 | Cui et. al. | | mBERT | 2021 | 49.5 | 38.7 | 34.4 | 35.6 | Cui et. al. | | T5-base+RIR | 2021 | 57.4 | - | - | - | Cui et. al. | | mT5-small+RIR | 2021 | 77.6 | 57.8 | 55 | 52.8 | Cui et. al. | | mT5-base+RIR | 2021 | 55.5 | 59.5 | 49.1 | 30.2 | Cui et. al. |

MCD 2

| Model / System | Year | Lang_En | Lang_He | Lang_Kn | Lang_Zh | Reported by | |:————–:|:—–:|:——-:|:——-:|:——-:|:——-:|:————————————————-:| | LSTM+Attention | 2021 | 6.3 | 5.6 | 9.9 | 7.5 | Cui et. al. | | E.Transformer | 2021 | 16.5 | 8.7 | 11.9 | 10.2 | Cui et. al. | | mBERT | 2021 | 13.4 | 11.4 | 12.3 | 15.1 | Cui et. al. | | T5-base+RIR | 2021 | 14.6 | - | - | - | Cui et. al. | | mT5-small+RIR | 2021 | 13 | 12.6 | 8.2 | 21.1 | Cui et. al. | | mT5-base+RIR | 2021 | 27.7 | 16.6 | 16.6 | 23 | Cui et. al. |

MCD 3

| Model / System | Year | Lang_En | Lang_He | Lang_Kn | Lang_Zh | Reported by | |:————–:|:—–:|:——-:|:——-:|:——-:|:——-:|:————————————————-:| | LSTM+Attention | 2021 | 13.6 | 11.5 | 15.7 | 15.1 | Cui et. al. | | E.Transformer | 2021 | 18.2 | 13 | 18.1 | 15.5 | Cui et. al. | | mBERT | 2021 | 17 | 18 | 18.1 | 19.4 | Cui et. al. | | T5-base+RIR | 2021 | 12.3 | - | - | - | Cui et. al. | | mT5-small+RIR | 2021 | 24.3 | 17.5 | 31.4 | 34.9 | Cui et. al. | | mT5-base+RIR | 2021 | 18.2 | 23.4 | 30.5 | 35.6 | Cui et. al. |

MCD mean

MCD mean is the mean accuracy of all three MCD splits.

Model / System Year Lang_En Lang_He Lang_Kn Lang_Zh Reported by
LSTM+Attention 2021 19.4 15.5 17.6 16.2 Cui et. al.
E.Transformer 2021 29.3 18.9 20.2 18.9 Cui et. al.
mBERT 2021 26.6 22.7 21.6 23.4 Cui et. al.
T5-base+RIR 2021 28.1 - - - Cui et. al.
mT5-small+RIR 2021 38.3 29.3 31.5 36.3 Cui et. al.
mT5-base+RIR 2021 33.8 33.2 32.1 29.6 Cui et. al.

Random

Random represents a random split of this dataset.

Model / System Year Lang_En Lang_He Lang_Kn Lang_Zh Reported by
LSTM+Attention 2021 96.6 80.8 88.7 86.8 Cui et. al.
E.Transformer 2021 99 90.4 93.7 92.2 Cui et. al.
mBERT 2021 98.7 91 95.1 93.3 Cui et. al.
T5-base+RIR 2021 98.5 - - - Cui et. al.
mT5-small+RIR 2021 98.6 90 93.8 91.8 Cui et. al.
mT5-base+RIR 2021 99.1 90.6 94.2 92.2 Cui et. al.

References

[1] Ruixiang Cui, Rahul Aralikatte, Heather Lent and Daniel Hershcovich.2021. Multilingual Compositional Wikidata Questions. arXiv preprint arXiv:2108.03509.

Go back to the README